

#### Analysis of the Floating Car Data of Turin Public Transportation system: first results

Roberta Ravanelli, Mattia Crespi

University of Rome "La Sapienza" Department of Civil, Constructional and Environmental Engineering Geodesy and Geomatics Division

Rome, 22<sup>nd</sup> January 2018



### Floating Car Data (FCD)

- We started to analyse the Floating Car Data (FCD) of Turin Public Transportation system, carried out by the GTT company
- The data were acquired by every vehicle of the fleet through its On Board Unit (OBU) in the month of April 2017, with a variable time interval (difference of several seconds)
- The data are provided in the CSV format and include the geographical coordinates along with a set of attributes (vehicle code, line code, turn, timestamp, ecc.)
- The original file is very heavy (2.19 GB) and it was converted in a database through a Python script based on the sqlite3 and pandas libraries



#### **Database generation**

#### About 30.000.000 records!

| BNew     | Database 📑 C    | Ipen Database    | . Write Changes  | SRevert Changes            |        |              |              |               |
|----------|-----------------|------------------|------------------|----------------------------|--------|--------------|--------------|---------------|
| ba tabas | e Structure Dro | onse Data Edit ( | ragnas Executo S | QL                         |        |              |              |               |
| able;    | fcd_table       |                  |                  | * 🚳 🐻                      |        |              | New Record   | Delete Record |
|          | index           | linea            | tumo(?)          | date                       | mezzo  | lat          | lon          | ^             |
|          | Eilter          | Friter           | Filter           | Fitur                      | Filtar | Piter        | Filter       |               |
| 1        | 1               | 36               | 5                | 2017-04-28 21:05:09.000000 | 802    | 45.073677062 | 7.5964450836 | ini           |
| 2        | 2               | 64               | 1                | 2017-04-28 11:10:02.000000 | 3641   | 45.064193725 | 7.6750035285 |               |
| з        | 3               | 51               | 2                | 2017-04-27 08:54:49.000000 | 977    | 45.119415283 |              |               |
| 4        | 4               | 6                | 3                | 2017-04-26 13:41:13.000000 | 6027   | 45.073696136 | 7.6814966201 | l             |
| 5        | 5               | 44               | 3                | 2017-04-13 13:47:58.000000 | 8017   | 45.066919237 | 7.5776481620 | har           |
| 6        | 6               | 58               | 3                | 2017-04-10 07:18:26.000000 | 2620   | 45.038261413 | 7.6190347671 | Levi I        |
| 7        | 7               | 5                | 5                | 2017-04-09 08:49:13.000000 | 1639   | 45.028236389 | 7.6017150878 | har           |
| 8        | 8               | 81               | 2                | 2017-04-08 09:20:20.000000 | 1254   | 44.994644165 | 7.7242064476 |               |
| 9        | 9               | 11               | 17               | 2017-04-06 11:56:30.000000 | 948    | 45.124114990 | 7.6440901758 | 5             |
| 10       | 10              | 16CS             | 10               | 2017-04-24 19:16:25.000000 | 2857   | 45.072139739 | 7.6556334495 | 5             |
| 11       | 11              | 5858             | 22               | 2017-04-25 20:18:18.000000 | 2785   | 45.060665130 | 7.6614084243 | 3             |
| 12       | 12              | 63               | 6                | 2017-04-18 10:46:06.000000 | 2769   | 45.011482238 | 7.6365866661 | Lui -         |
| 13       | 13              | 7258             | 22               | 2017-04-15 19:34:18.000000 | 1000   | 45.095348358 | 7.6690135002 | L             |
| 14       | 14              | 67               | 2                | 2017-04-13 11:31:45.000000 | 3007   | 45.004108928 | 7.6849350920 | h             |
| 15       | 15              | 57               | 8                | 2017-04-12 22:27:30.000000 | 855    | 45.067314147 | 7.6714982986 |               |
| 16       | 16              | 3                | 23               | 2017-04-07 08:51:16.000000 | 5012   | 45.099411010 | 7.6486001014 | hai.          |
| 17       | 17              | 13               | в                | 2017-04-06 09:30:10.000000 | 2857   | 45.076423045 | 7.6698732376 | h             |
| 1.0      | 18              | 5                | 8                | 2017-04-05 17:12:22 000000 | 880    | 45 056266784 | 7 6644783020 |               |



#### Velocity analysis

- The data were organized for lines, then for vehicles and finally they were chronologically ordered
- For every line of the transportation network:
  - the Vincenty formula was used to compute the planimetric displacement Δs between two positions of the specific vehicle in two consecutive time moments
  - the velocities were computed as  $v = \frac{\Delta s}{\Delta t}$
- The computed velocities were represented as arrows and plotted on top of the Turin drive network graph, automatically downloaded from Open Street Map through the OSMnx Python library

| 73  | Bdef | <pre>boh(drive_network_graph, start_lon, start_lst, delta_lon, delta_lat, velocities, sogli<br/>fig_from_function, ax_from_function = ox.plot_graph(drive_network_graph, close = False<br/>or = monlowe Normalization for a social or under social or under the social or under th</pre> |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22  |      | <pre>fplt.gcs().set_aspect('equal',divetable='box')</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 27  | ġ.   | plt.guiver( start lon, # start x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |      | start lat, # start y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 79  |      | delta lon, # delta x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0 |      | delta lat, # delta y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 81  |      | angles='xy', # 'xy': arrows point from (x,y) to (x+dx, y+dy). Use this for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 112 |      | scale=1, # più è grande, + le frecce sono corte Number of data units per a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 83  |      | scale_units='xy', # usando le scale units, non è più necessario alterare l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8.4 |      | color=cm.jet(n2(velocities)), # color = velocities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 85  |      | zorder = 5, fpiù è alto, più il plot è in primo piano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.6 |      | edgecolor='k', # colore bordo freccia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 87  |      | linewidth=.7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 88  |      | alpha=0.8) # trasparenza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Example of computed velocities





#### **Outlier removal**

Before proceeding with the time analysis, the **outliers** were **removed** by eliminating all the records:

- 1. whose  $\Delta t$  are higher than 99.5<sup>th</sup> percentile and lower than 0.5<sup>th</sup> (statistically not significant)
- 2. characterized by a velocity higher than 5 times the mean



#### histo dt linea 11

#### Outlier removal

Before proceeding with the time analysis, the **outliers** were **removed** by eliminating all the records:

- **1.** whose  $\Delta t$  are higher than 99.5<sup>th</sup> percentile and lower than 0.5<sup>th</sup> (statistically not significant)
- 2. characterized by a velocity higher than 5 times the mean



histo dt linea 11

#### Line 11: velocities

After the **outlier removal**, the reconstructed path follows more closely the actual line route: the **longest arrows**, probably due to the bus routes from and to the depot, are **eliminated** 



#### Line 11: velocities

After the **outlier removal**, the reconstructed path follows more closely the actual line route: the **longest arrows**, probably due to the bus routes from and to the depot, are **eliminated** 



#### **Temporal analysis**

Once the outliers were removed, a temporal analysis was performed

- The data were divided into working and weekend days, considering the following time slots:
  - ► 0 5
  - ► 5 7
  - ▶ 7 9
  - ▶ 9 11
  - 11 13
  - 13 15
  - 15 17
  - 17 19
  - 19 21
  - 21 24



#### Line 11: time slot velocities in working days





#### Line 11: time slot velocities in weekend days





#### Line 11: velocities in the time slot 17 - 19



#### Line 11: velocities in the time slot 17 - 19



#### Considerations

It can be noticed that:

- the highest velocities occur at night and in late evening, with a local peak shortly after the lunch hour
- the lowest velocities occur during the peak hours, in correspondence of the office entrance and exit hours
- the differences between working and weekend days are more evident in the peak hour time slots
- during 0-5 and 21-24 time slots the difference is small, since in these hours the traffic level is significantly lower also in the working days



PRIN PROJECT: URBAN GEOmatics for Bulk Information Generation, Data Assessment and Technology Awareness

### Line 12: velocities







PRIN PROJECT: URBAN GEOmatics for Bulk Information Generation, Data Assessment and Technology Awareness

#### Line 12: velocities







#### Line 12: $\Delta t$ histo





#### Line 12: time slot velocities in working days





#### Line 12: time slot velocities in weekend days

The line is not active on Sundays





Line 13: velocities

155

PARTICIPAL STREET, STR







Line 13: velocities

105

STATUS ROUTE STREET







#### **Line 13:** $\Delta t$ histo





#### Linea 13: time slot velocities in working days





#### Linea 13: time slot velocities in weekend days

The line is not active on Sundays





PRIN PROJECT: URBAN GEOmatics for Bulk Information Generation, Data Assessment and Technology Awareness

# Line 39: velocities









PRIN PROJECT: URBAN GEOmatics for Bulk Information Generation, Data Assessment and Technology Awareness

## Line 39: velocities











#### **Line 39:** $\Delta t$ histo





#### Line 39: time slot velocities in working days





#### Linea 39: time slot velocities in weekend days





#### Line 39: velocities in the time slot 13 - 15



#### Line 39: velocities in the time slot 13 - 15



#### **Open** issues

- To deepen the temporal analysis
- Presence of velocities not referable to the actual path of the lines
- ► To assign the velocities to the line network topology



Necessity to obtain graphs describing the path of every line



## Thank you for your kind attention!

