Analysis of the Floating Car Data of Turin Public Transportation system: first results

Roberta Ravanelli, Mattia Crespi

University of Rome “La Sapienza”
Department of Civil, Constructional and Environmental Engineering
Geodesy and Geomatics Division

Turin, 18th July 2018
Floating Car Data (FCD)

- The Floating Car Data (FCD) of Turin Public Transportation system were acquired by every vehicle of the fleet through its On Board Unit (OBU) in the month of April 2017, with a variable time interval (difference of several seconds).

- The FCD are provided in the CSV format and include the geographical coordinates along with a set of attributes (vehicle code, line code, turn, timestamp, ecc.).

- The original file is very heavy (2.19 GB, 30,000,000) and it was converted in a database through a Python script based on the sqlite3 and pandas libraries.
Velocity analysis

- The **FCD** were **analysed** for **lines**, then for **vehicles** and finally they were **chronologically ordered**
- For every line of the transportation network:
 - the **Vincenty** formula was used to compute the **planimetric displacement** Δs between **two positions** of the specific vehicle in two **consecutive time moments**
 - the **velocities** were computed as $v = \frac{\Delta s}{\Delta t}$
- The computed **velocities** were represented as **arrows** and plotted on top of the **Turin drive network graph**, automatically downloaded from Open Street Map
- Before proceeding with the time analysis, the **outliers** were **removed** by eliminating all the records not statistically significant ($\Delta t > 99.5^{th}$ percentile & $\Delta t < 0.5^{th}$ percentile & $v > v_{mean}$)
Line 39: velocities

After the **outlier removal**, the reconstructed path follows more closely the actual line route: the **longest arrows**, probably due to the bus routes from and to the depot, are **eliminated**
Line 39: velocities

After the **outlier removal**, the reconstructed path follows more closely the actual line route: the **longest arrows**, probably due to the bus routes from and to the depot, are **eliminated**.
A preliminary strategy was implemented to **assign** the **velocities to the line network topology**:

- for **every FCD point**, the **closest tree** of the specific line network is selected.
A preliminary strategy was implemented to assign the velocities to the line network topology:

- for every FCD point, the closest tree of the specific line network is selected.
FCD projection to line networks

A preliminary strategy was implemented to assign the velocities to the line network topology:

- for every FCD point, the closest tree of the specific line network is selected
FCD projection to line networks

A preliminary strategy was implemented to assign the velocities to the line network topology:

- for every FCD point, the closest tree of the specific line network is selected
Topological issues occur when the FCD point is located in a segment in which the distance between two (or more) trees is comparable to the GNSS measurement errors.
Topological issues

A possible solution is to consider:

- the **cardinality information** contained in the **line network**
- the **temporal information** contained in the **FCD**

Select the segment closest to the previous selected tree
Topological issues

It is rather improbable that the FCD point 4 and point 5 may be assigned to the tree 206-207 of the network, since the vehicle was located in the tree 77-78 few moments before.
FCD projection to line networks
FCD projection to line networks
Conclusions and further developments

A **general methodology** able to **analyse** the huge amount of information contained in **Transport Big Data** has been developed.

Necessary further developments:

- **refine the outlier removal process** in order to all the **velocities not referable** to the **actual path** of the **lines**
- to **test** the developed **topological procedure** on **all the velocity data**, by checking the **effective reliability** and **real-time feasibility** of the designed methodology
- to **compute** the **impedence maps** and deliver the corresponding **metadata**
- extend the developed methodology to the other cities of the PRIN
Thank you for your kind attention!