A FREE AND OPEN SOURCE TOOL TO ASSESS THE ACCURACY OF LAND COVER MAPS: IMPLEMENTATION AND APPLICATION TO LOMBARDY REGION (ITALY)

Maria Antonia Brovelli, Gorica Bratic, Monia Elisa Molinari
Context

• Importance of Land Use and Land Cover (LULC) maps for environmental studies and applications, e.g. biodiversity, natural resources, climate change

• Rapidly increasing number of high-resolution LULC datasets due to the continuous advances in Remote Sensing sensors and mapping technologies

• Increasing availability of global open LULC datasets

• Importance of LULC maps classification accuracy, a key factor to evaluate their suitability for the various applications where they are exploited
LULC & Validation

• The accuracy assessment of digital remotely-sensed data started around 1975:

I. simple visual checkup: “looking good” requirement

II. non-site-specific assessment approach: simply comparison of land use classes areal extent for classified and ground truth datasets

III. error/confusion matrix technique and its derived accuracy measures

“The standard descriptive reporting tool for accuracy assessment of remotely sensed data” [1]

Error matrix & FOSS GIS

• Error matrix enables the comparison of two sources of spatial information, thus represents a key tool for Geographical Information System (GIS) software.

• FOSS GIS software currently focus on the simple error matrix computation and they provide very few indexes:
 - **QGIS (Accuracy Assessment Plugin):** user’s and producer’s accuracies, allocation and quantity disagreements
 - **GRASS GIS (r.kappa module):** overall accuracy, user’s and producer’s accuracies, Kappa

Development of a new FOSS tool that can be easily integrated into GIS systems and enables users to automatically calculate all the statistics based on confusion matrix proposed by literature.
Outline

• Literature review
• Low resolution bias analysis
• Implementation
• Application
 • Datasets
 • Data Processing
 • Results
• Conclusions
• Further work
Literature review: error matrix

<table>
<thead>
<tr>
<th>Classified (comparison) map</th>
<th>Reference (ground truth) map</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>n_{11} n_{12} ... n_{1q}</td>
</tr>
<tr>
<td>i=2</td>
<td>n_{21} n_{22} ... n_{2q}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i=q</td>
<td>n_{q1} n_{q2} ... n_{qq}</td>
</tr>
</tbody>
</table>
Literature review: indices

- Most commonly used:
 - Overall accuracy (P0)
 - Producer’s accuracy (PA) \[1 - \text{Omission error}\]
 - User’s Accuracy (UA) \[1 - \text{Commission error}\]

- Derived from P0, PA, UA
 - Average of user’s accuracy (AUA) or of producer’s accuracy (APA)
 - Combined user’s (CAU) or producer’s accuracy (CAP)
 - Hellden’s mean accuracy (MAH)
 - Short’s mean accuracy (MAS)
 - Classification success index (CSI) and its variations Group Success Index (GCSI) and Individual classification success index (ICSI)

- Margfit
Literature review: indices

• Derived from information theory
 • Average mutual information (AMI) and different ways of normalizing it (NMIa – arithmetic mean, NMIg – geometric mean)

• Kappa and kappa-like indexes
 • Standard kappa index (K)
 • Conditional kappa (Kc)
 • Weighted kappa (Kw)
 • Tau (τ)
 • Aickins alpha (α)
 • Ground truth index (GT)

• Indexes of disagreement
 • Quantity disagreement
 • Allocation disagreement
Low-resolution bias analysis

• It is applied on the ground truth map (higher resolution)
• It quantifies error due to the loss of information while resampling from high to lower resolution
• It is only applicable to the binary maps so it requires reclassification
• The results are given by means of Pareto frontier
• Tool created by Python programming language
FOSS tool: implementation

• Stand-alone tool in Python Programming language based on Numpy and Pandas libraries
 • Input data: error matrix
 • Output data: csv with accuracy measures

• GRASS GIS script based on GRASS Python scripting libraries:
 • Input data: classified and reference datasets
 • Output data: csv with accuracy measures
Application: classified datasets

GlobeLand30 (GL30)

- Product of National Geomatics Center of China (NGCC)
- 12 land cover categories
- 30 m of spatial resolution
- Reference year: 2010
Application: classified datasets

Global Human Settlement (GHS)

- Product of EU Joint Research Center
- 2 categories: built-up, no built-up
- 38 m spatial resolution
- Reference year: 2014
Application: classified datasets

Global Urban Footprint (GUF)

- Product of German Aerospace Center (DLR)
- 2 categories: built-up, no built-up
- 12 m of spatial resolution
- Reference year: 2011
Application: reference dataset

DUSAF 4.0

- Database of land use of Lombardy Region
- 5 level hierarchical classification system
- Scale 1:10,000
- Reference year: 2012
Application: processing

![Diagram showing processing steps from reference to classified map, including rasterization, reclassification, re-projection, confusion matrix, and index computation.]

- Reference
 - Rasterization
 - Reclassification
- Classified Map
 - Re-projection
 - Reclassification

Confusion Matrix

Indexes Computation
Application: GL30 reclassification process

GL30-11 case study

The classes of DUSAF have been reclassified according to GL30 thematic legend based on eleven classes.

<table>
<thead>
<tr>
<th>DUSAF classes</th>
<th>GLOBELAND30 classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Areas</td>
<td>Cultivated land</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>Mixed forest</td>
</tr>
<tr>
<td>Broad-leaved forest, Recent afforestation</td>
<td>Broadleaf forest</td>
</tr>
<tr>
<td>Coniferous forest</td>
<td>Coniferous forest</td>
</tr>
<tr>
<td>Natural Grassland</td>
<td>Grasslands</td>
</tr>
<tr>
<td>Moors and heathland, Transitional woodland/shrub</td>
<td>Shrublands</td>
</tr>
<tr>
<td>Wetlands</td>
<td>Wetlands</td>
</tr>
<tr>
<td>Artificial Areas</td>
<td>Artificial surfaces</td>
</tr>
<tr>
<td>Beaches, dunes and sand planes, Bare Rock, Sparsely vegetated areas</td>
<td>Bare lands</td>
</tr>
<tr>
<td>Water Bodies</td>
<td>Water</td>
</tr>
<tr>
<td>Glaciers and perpetual snow</td>
<td>Permanent snow and ice</td>
</tr>
</tbody>
</table>
GL30-5 case study

The GL30 has been reclassified according to the five first-level classes of DUSAF.

<table>
<thead>
<tr>
<th>DUSAF classes</th>
<th>GLOBELAND30 classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial surfaces</td>
<td>Artificial surfaces</td>
</tr>
<tr>
<td>Agricultural areas</td>
<td>Cultivated land</td>
</tr>
<tr>
<td>Forest and semi natural areas</td>
<td>Broadleaf forest, Coniferous forest, Mixed forest, Grasslands, Shrublands, Bare lands, Permanent snow and ice</td>
</tr>
<tr>
<td>Wetlands</td>
<td>Wetlands</td>
</tr>
<tr>
<td>Water bodies</td>
<td>Water</td>
</tr>
</tbody>
</table>
Application: results GL30-11 (global indexes)
Application: results GL30-11 (per-classes indexes)

- I - Cropland
- II - Mixed forest
- III - Broadleaf forest
- IV - Coniferous forest
- V - Grasslands
- VI - Shrubland
- VII - Wetlands
- VIII - Water bodies
- IX - Artificial surfaces
- X - Barelands
- XI - Permanent ice and snow

Legend:
- PA
- UA
- AUP
- ICSI
- MAH$_i$
- MAS$_i$
- GT
- K$_c$
- EC$_{GT}$
Low-resolution bias-Shrubland class
Application: results GL30-5 (global indexes)
Application: results GL30-5 (per-classes indexes)

I - Artificial surfaces
II - Agricultural areas
III - Forests and seminatural areas
IV - Wetlands
V - Water Bodies

Legend:
- PA
- UA
- AUP
- ICSI
- MAH_i
- MAS_j
- GT
- K_c
- EC_GT
Application: results GHS (global indexes)
Application: results GHS (per-classes indexes)
Application: results GUF (global indexes)
Application: results GUF (per-classes indexes)
Conclusions

• A detailed investigation about confusion matrix-derived indexes was performed and a Python FOSS module was implemented.

• The tool was successfully applied to evaluate the classification accuracy of three high-resolution LULC datasets (GL30, GHS, GUF):
 • very satisfactory accuracy is obtained for GUF and GHS built-up datasets.
 • high overall accuracy is obtained by considering the GL30-5 case study.
 • accuracy decreases if a more detailed thematic legend is considered (GL30-11 case study), especially for the classes related to vegetation.
Further work

• Extension of the tool with additional functions able to detect any patterns of error in discrepancies between the LULC (Join counts, Moran’s I...)

• Development of a Plugin for QGIS, with the purpose of creating a user-friendly Graphical User Interface and widen its usage among users, professionals and researchers

• The plugin will be published for the three workshops “High-Resolution Land Cover Inter-comparison and Validation” (ISPRS Capacity Building Initiative 2018) which will be held in Dar Es Salaam (1/9/2018), Nairobi (3/9/2018) and Delft (October 2018, Technical Commission IV Symposium)
Thank you for the attention

Maria Antonia Brovelli

Politecnico di Milano
Department of Civil and Environmental Engineering
Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)

maria.brovelli@polimi.it

This work was partially supported by URBAN-GEO BIG DATA, a Project of National Interest (PRIN) funded by the Italian Ministry of Education, University and Research (MIUR) – id. 20159CNLW8.